Skip to contents

The pumpresult object is an S3 class that holds the results from `pump_power()`, `pump_sample()`, and `pump_mdes()`.

It has several methods that pull different information from this object, and some printing methods for getting nicely formatted results.

Pump result objects are also data.frames, so they can be easily manipulated and combined. The return values from the `grid` functions will just return data frames in general.

Returns whether call was power, mdes, or sample.

Calls the print_context method with results and control both set to TRUE.

Usage

params(x, ...)

d_m(x, ...)

design(x, ...)

search_path(x, ...)

pump_type(x)

is.pumpresult(x)

# S3 method for class 'pumpresult'
x[...]

# S3 method for class 'pumpresult'
x[[...]]

# S3 method for class 'pumpresult'
dim(x, ...)

# S3 method for class 'pumpresult'
summary(object, ...)

# S3 method for class 'pumpresult'
print(x, n = 10, header = TRUE, search = FALSE, include_SE = TRUE, ...)

# S3 method for class 'pumpresult'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)

Arguments

x

a pumpresult object (except for is.pumpresult, where it is a generic object to check).

...

additional arguments to be passed to the as.data.frame.list methods.

object

Object to summarize.

n

Number of lines of search path to print, max.

header

FALSE means skip some header info on the result, just print the data.frame of actual results.

FALSE means don't print the search path for a result for mdes or sample.

include_SE

TRUE means include standard errors given design (if any) in the printout. Default to TRUE.

row.names

NULL or a character vector giving the row names for the data frame.

optional

logical. If TRUE, setting row names and converting column names is optional.

Value

params: List of design parameters used.

d_m: Context (d_m) used (as string).

design (the randomization and levels) as string.

search_path: Dataframe describing search path, if it was saved in the pumpresult object.

pump_type: power, mdes, or sample, as a string.

is.pumpresult: TRUE if object is a pumpresult object.

`[`: pull out rows and columns of the dataframe.

`[[`: pull out single element of dataframe.

dim: Dimension of pumpresult (as matrix)

summary: No return value; prints results.

print: No return value; prints results.

as.data.frame: pumpresult object as a clean dataframe (no more attributes from pumpresult).

See also

update

update_grid

print_context

print_context

Examples

pp <- pump_power(d_m = "d3.2_m3ff2rc",
  MTP = 'HO', nbar = 50, J = 30, K = 10,
  M = 5, MDES = 0.125, Tbar = 0.5, alpha = 0.05,
  numCovar.1 = 1, numCovar.2 = 1,
  R2.1 = 0.1, R2.2 = 0.1, ICC.2 = 0.2, ICC.3 = 0.2,
  omega.2 = 0, omega.3 = 0.1, rho = 0.5, tnum = 1000)
  
print(pp)
#> power result: d3.2_m3ff2rc d_m with 5 outcomes
#>   MTP    D1indiv    D2indiv    D3indiv    D4indiv    D5indiv indiv.mean  min1
#>  None      0.694      0.702      0.738      0.713      0.715      0.712      
#>    SE ( 0.050 )  ( 0.050 )  ( 0.050 )  ( 0.050 )  ( 0.050 )                  
#>    HO      0.550      0.551      0.555      0.567      0.552      0.555 0.807
#>   min2  min3  min4 complete df1
#>                             279
#>                                
#>  0.657 0.542 0.436    0.379    
#> 	0.005 <= MCSE <= 0.008
params(pp)
#> $MTP
#> [1] "HO"
#> 
#> $MDES
#> [1] 0.125 0.125 0.125 0.125 0.125
#> 
#> $numZero
#> NULL
#> 
#> $M
#> [1] 5
#> 
#> $J
#> [1] 30
#> 
#> $K
#> [1] 10
#> 
#> $nbar
#> [1] 50
#> 
#> $Tbar
#> [1] 0.5
#> 
#> $alpha
#> [1] 0.05
#> 
#> $two.tailed
#> [1] TRUE
#> 
#> $numCovar.1
#> [1] 1
#> 
#> $numCovar.2
#> [1] 1
#> 
#> $numCovar.3
#> [1] 0
#> 
#> $R2.1
#> [1] 0.1 0.1 0.1 0.1 0.1
#> 
#> $R2.2
#> [1] 0.1 0.1 0.1 0.1 0.1
#> 
#> $R2.3
#> [1] 0 0 0 0 0
#> 
#> $ICC.2
#> [1] 0.2 0.2 0.2 0.2 0.2
#> 
#> $ICC.3
#> [1] 0.2 0.2 0.2 0.2 0.2
#> 
#> $omega.2
#> [1] 0 0 0 0 0
#> 
#> $omega.3
#> [1] 0.1 0.1 0.1 0.1 0.1
#> 
#> $rho
#> [1] 0.5
#> 
#> $rho.matrix
#> NULL
#> 
#> $B
#> [1] 1000
#> 
#> $tnum
#> [1] 1000
#> 
#> $d_m
#> [1] "d3.2_m3ff2rc"
#> 
print_context(pp)
#> power result: d3.2_m3ff2rc d_m with 5 outcomes
#> 
#>   MDES vector: 0.125, 0.125, 0.125, 0.125, 0.125
#>   nbar: 50	J: 30	K: 10	Tbar: 0.5
#>   alpha: 0.05	
#>   Level:
#>     1: R2: 0.1 (1 covariate)
#>     2: R2: 0.1 (1 covariate)	ICC: 0.2	omega: 0
#>     3:   fixed effects  	ICC: 0.2	omega: 0.1
#>   rho = 0.5
d_m(pp)
#> [1] "d3.2_m3ff2rc"
pump_type(pp)
#> [1] "power"
is.pumpresult(pp)
#> [1] TRUE
as.data.frame(pp)
#>    MTP D1indiv D2indiv D3indiv D4indiv D5indiv indiv.mean  min1  min2  min3
#> 1 None   0.694   0.702   0.738   0.713   0.715     0.7124    NA    NA    NA
#> 2   HO   0.550   0.551   0.555   0.567   0.552     0.5550 0.807 0.657 0.542
#>    min4 complete        SE1        SE2        SE3        SE4        SE5 df1
#> 1    NA       NA 0.05043808 0.05043808 0.05043808 0.05043808 0.05043808 279
#> 2 0.436    0.379         NA         NA         NA         NA         NA  NA
dim(pp)
#> [1]  2 18
summary(pp)
#> power result: d3.2_m3ff2rc d_m with 5 outcomes
#> 
#>   MDES vector: 0.125, 0.125, 0.125, 0.125, 0.125
#>   nbar: 50	J: 30	K: 10	Tbar: 0.5
#>   alpha: 0.05	
#>   Level:
#>     1: R2: 0.1 (1 covariate)
#>     2: R2: 0.1 (1 covariate)	ICC: 0.2	omega: 0
#>     3:   fixed effects  	ICC: 0.2	omega: 0.1
#>   rho = 0.5
#>   MTP    D1indiv    D2indiv    D3indiv    D4indiv    D5indiv indiv.mean  min1
#>  None      0.694      0.702      0.738      0.713      0.715      0.712      
#>    SE ( 0.050 )  ( 0.050 )  ( 0.050 )  ( 0.050 )  ( 0.050 )                  
#>    HO      0.550      0.551      0.555      0.567      0.552      0.555 0.807
#>   min2  min3  min4 complete df1
#>                             279
#>                                
#>  0.657 0.542 0.436    0.379    
#> 	0.005 <= MCSE <= 0.008
#> 	(tnum = 1000)
transpose_power_table(pp)
#> power result: d3.2_m3ff2rc d_m with 5 outcomes
#>                 power  None    HO
#>  individual outcome 1 0.694 0.550
#>                    SE (  )       
#>  individual outcome 2 0.702 0.551
#>  individual outcome 3 0.738 0.555
#>  individual outcome 4 0.713 0.567
#>  individual outcome 5 0.715 0.552
#>       mean individual 0.712 0.555
#>             1-minimum       0.807
#>             2-minimum       0.657
#>             3-minimum       0.542
#>             4-minimum       0.436
#>              complete       0.379
#> 	0.005 <= MCSE <= 0.008

J <- pump_sample(d_m = "d2.1_m2fc",
  MTP = 'HO', power.definition = 'D1indiv',
  typesample = 'J', target.power = 0.7,
  nbar = 50, M = 3, MDES = 0.125,
  Tbar = 0.5, alpha = 0.05, numCovar.1 = 1,
  R2.1 = 0.1, ICC.2 = 0.05, rho = 0.2, tnum = 1000)
  
search_path(J)
#>    step MTP target.power       pt         dx    w     power       delta
#> 1     0  HO          0.7 27.00000         NA  100 0.6000000 -0.10000000
#> 2     0  HO          0.7 29.35261         NA  100 0.6100000 -0.09000000
#> 3     0  HO          0.7 31.80348         NA  100 0.7200000  0.02000000
#> 4     0  HO          0.7 34.35261         NA  100 0.7600000  0.06000000
#> 5     0  HO          0.7 37.00000         NA  100 0.8500000  0.15000000
#> 6     1  HO          0.7 31.96015 0.02845129  110 0.6000000 -0.10000000
#> 7     2  HO          0.7 33.10667 0.04118361  121 0.7272727  0.02727273
#> 8     3  HO          0.7 32.84062 0.04189974  133 0.6842105 -0.01578947
#> 9     4  HO          0.7 32.93989 0.04237974  146 0.7328767  0.03287671
#> 10    5  HO          0.7 32.77115 0.04273019  161 0.6645963 -0.03540373
#> 11    6  HO          0.7 32.92223 0.04430372  177 0.7401130  0.04011299
#> 12    7  HO          0.7 32.77356 0.04493267  195 0.7589744  0.05897436
#> 13    8  HO          0.7 32.57876 0.04375818 1000 0.7100000  0.01000000
#> 14    9  HO          0.7 32.51694 0.04231497 1000 0.7160000  0.01600000
#> 15   10  HO          0.7 32.43206 0.04015613 1000 0.6900000 -0.01000000
#> 16   11  HO          0.7 32.47802 0.04176746  287 0.7317073  0.03170732
#> 17   12  HO          0.7 32.39186 0.03508176  316 0.7120253  0.01202532
#> 18   13  HO          0.7 32.36125 0.03441224  348 0.7155172  0.01551724
#> 19   14  HO          0.7 32.13187 0.02219274  383 0.7650131  0.06501305
#> 20   15  HO          0.7 32.08622 0.02766443  421 0.7173397  0.01733967
#> 21   16  HO          0.7 31.88810 0.02205884 1000 0.6890000 -0.01100000
#> 22   17  HO          0.7 32.06172 0.02737484  509 0.7308448  0.03084479
#> 23   18  HO          0.7 31.95504 0.02555561  560 0.7107143  0.01071429
#> 24   19  HO          0.7 31.91377 0.02484937 1000 0.7190000  0.01900000
#> 25   20  HO          0.7 31.81727 0.02333786 1000 0.6960000 -0.00400000
#> 26   20  HO          0.7 31.81727 0.02333786 4000 0.7050000  0.00500000
power_curve(J)   
#>   step       pt    w MTP target.power  power
#> 1    0 27.00000 2000  HO          0.7 0.6265
#> 2    0 30.94638 2000  HO          0.7 0.6915
#> 3    0 35.16185 2000  HO          0.7 0.7395
#> 4    0 39.64638 2000  HO          0.7 0.8035
#> 5    0 44.40000 2000  HO          0.7 0.8655